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A Railway Accident Prevention System Using An
Intelligent Pilot Vehicle

Shixiong Wang, Xinke Li, Zhirui Chen, and Yang Liu

Abstract—Railway transportation, as a pillar of modern civi-
lization, unavoidably suffers from external risk factors such as
natural disasters, track breakages, and train collisions, which
lead to substantial loss of life and property. Therefore, there is an
urgent need to design a mechanism for warning and preventing
railway accidents in order to diminish costs. We propose an add-
on solution to the current system, which equips a train with a
multifunctional pilot vehicle in the front: the vehicle pilots its
mother train, warning it of impending danger, and stopping
it if required. Specifically, the pilot vehicle is equipped with
a wireless communication device to converse with the mother
train, a ranging device for measuring the real-time distance from
the mother train, a camera to capture the railway conditions
ahead and recognize anomaly situations, and other sensors (e.g.,
collision detector and tiltmeter) to monitor its own conditions.
Based on the above equipment, an efficient autonomous driving
method is designed for the pilot vehicle to adjust the distance
from the train. The autonomous driving problem can be for-
mulated into a multi-objective functional optimization, where
the objective is to minimize the total energy consumption and
the experienced jerk of the pilot vehicle, and the decision is a
continuous-time function that represents the traction or braking
force imposed on the pilot vehicle. Additionally, a vision-based
deep learning method is devised to automatically detect the
mentioned railway anomalies using the ego-view camera of the
pilot vehicle. To control the operational and maintenance costs,
we propose to deploy pilot vehicles only for trains running
in potentially dangerous environments, e.g., mountainous areas
during rainy days. By implementing the proposed scheme, we
anticipate a reduction in accident rates within railway systems.

Index Terms—Intelligent Transportation, Railway Accidents,
Autonomous Driving and Control, Multi-objective Functional
Optimization, Anomaly Detection, Deep Neural Network.

I. INTRODUCTION

Due to the critical role that railway transportation plays in
modern civilization, railway accidents, once they occur, always
lead to severe consequences, such as loss of human life, dam-
age to the environment, and disruption of economic activities.
Train collisions and derailments are the most common types of
severe railway accidents, and can result from various factors.
Specifically, train collisions, which occur between operating
trains and barricades, humans, or other trains, are often caused
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by landslides or mudslides, trespassing, and dysfunction of
scheduling systems, respectively. In contrast, derailments are
mainly induced by track distortions or breakages, and these
track issues might be caused by equipment aging, earthquakes,
terrorism, and so on. Until today, railway accidents, including
train collisions and derailments, continue to be reported ex-
tensively around the world, including in the U.S. [1], India
[2], and China [3], [4]. For example, in the past decade, the
U.S. has reported 7,786 deaths and 80,248 non-fatal injuries
attributed to railroad transportation accidents, as stated by
the Federal Railroad Administration [5]. So far, significant
efforts have already been made to prevent train accidents
by addressing controllable factors such as dysfunction of
scheduling systems and misoperation of train drivers [6],
[7], [8], [9], [10]. Typical solutions include Positive Train
Control (PTC) systems [11], [12], [13] and the advanced
version of PTC, Communication-Based Train Control (CBTC)
systems [14]. However, the safety issues in railway transporta-
tion resulting from uncontrollable factors remain unresolved,
including landslides or mudslides, trespassing (especially not
at grade crossings),1 equipment aging, earthquakes, and ter-
rorism. Hence, there is a great interest in finding a more
comprehensive railway accident prevention scheme working
in various circumstances, and the scheme is expected to be
compatible with existing railway infrastructures.

In current practice, several strategies have been presented
for railroad accident prevention at the system level. Common
preventive measures for railway accidents are carried out
through routine maintenance by ad-hoc inspection vehicles
[16], [17] and the construction of physical barriers [18]. The
former refers to the daily inspection procedure where rail
tracks undergo a set of maintenance schedules to prevent
accidents associated with track failures (e.g., track distortions,
track tilts, and track breakages), while the latter implies
physical fences that encircle railway systems to reduce human-
element risks such as trespassing. Although these measures
do showcase their usefulness nowadays, they fail to inspect
railway conditions in a real-time manner and are, therefore,
unable to respond to many emergencies. For example, periodic
railway inspection by ad-hoc vehicles is not sufficient to
respond promptly to cloudbursts or other sudden climate
events in mountainous areas. In another instance, unexpected
trespassers or suicides can climb rail fences, requiring the
installation of a real-time surveillance system capable of
notifying and braking running trains.

1Trespassing at grade crossings can be monitored by cameras [15] and
prevented by PTC systems [11, p. 5].
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With the rapid development of sensing technology, an
alternative to current accident prevention measures is to deploy
cutting-edge sensors on the railway system [19], [20]. In the
literature, two types of deployment strategies for sensors are
reported. One is the on-board strategy, where sensors are
installed on the locomotives of trains [20], while the other
is the wayside strategy, where sensors are placed on (or near)
railways [19]. On-board sensors such as LiDARs and cameras
are the first to be fitted to the train system. However, the sen-
sors’ limited range prevents them from warning train operators
or operational systems of approaching threats at a greater dis-
tance, e.g., one kilometer. Especially in light of the increasing
popularity of high-speed trains, the sensing distance may not
allow sufficient time for the train to act on warnings effectively.
A plausible upgrade to on-board sensors is the establishment of
wayside wireless sensor networks (WSNs), which monitor all-
around and real-time railway conditions [21], [19], [22]. WSNs
consist of autonomous and spatially distributed sensors that
cooperatively monitor the railway infrastructure, structures,
and operations, allowing early detection of possible accidents.
The monitoring data are individually collected by each sensor
and transferred to remote servers for centralized processing
[21]. However, two issues have to be noted. The major one is
the high cost of deploying large-scale sensor networks, which
are inexpensive per sensor unit, yet cumulatively expensive,
and building wireless communication infrastructures to cover
all existing railway systems. The second one is to design robust
and reliable sensor powering, maintenance, and replacement
schemes, which is difficult considering the bulky size of WSNs
and the harsh natural circumstances in some railway lines [23].

To address the above concerns about the prevention of rail-
way accidents, motivated by vehicle platooning problems [24],
[25], we propose a novel and flexible scheme for upgrading
the current rail transportation system by using multifunctional
pilot vehicles. In this scheme, a pilot vehicle acts as a navigator
for each train, exploring the train’s route ahead. Specifically,
when there is an accident risk on the railway, the pilot vehicle
warns its mother train of the danger and, if required, instructs
the train to halt promptly. Such pilot vehicles offer more cost
flexibility compared to WSNs, as they can be deployed on
active trains rather than the entire fleet. Also, they can be
employed solely on railway lines with a high risk of accidents,
e.g., mainlines in mountainous areas during rainy days. On
the other hand, compared with WSNs’ maintenance difficulty
due to large coverage areas, the suggested scheme enables
frequent maintenance and replacement of pilot vehicles at
railway terminals, resulting in a higher level of functional
reliability. Admittedly, it is promising to jointly adopt our
scheme and existing WSN solutions in an appropriate and ad
hoc manner, further improving the sensitivity and timeliness
of railway accident detection. However, this side problem is
beyond the scope of this paper.

In the following contexts, we first propose a system archi-
tecture for the pilot vehicle and the method to integrate it into
current railway transportation. Then, specific technologies for
the pilot vehicle, such as autonomous driving and vision-based
anomaly detection methods, are investigated. The autonomous
driving method is designed for the pilot vehicle to automati-

cally adjust its distance from the mother train, while the vision-
based anomaly detection method is used to monitor the railway
conditions ahead in a real-time manner. With this systematic
approach, we expect that railway accidents worldwide could
be avoided, or at least controlled. However, it is possible that
some new safety issues will be introduced when using the
proposed solution. For example, the pilot vehicle might lose
reliable communication with its mother train in some rare
cases (e.g., anomalies in the communication devices), so that
the train would collide with its pilot vehicle. Nevertheless,
we believe that this kind of collision costs are significantly
less than the usual railway accidents because the safety of
humans is the first concern, and the mass, i.e., inertia, of
the pilot vehicle is small. Additionally, the use of buffering
devices between the pilot vehicle and its mother train can
further control the collision risks. Furthermore, the vision-
based railway inspection method may not work robustly at
night or in extremely bad weather conditions (e.g., heavily
rainy and foggy). However, this does not result in disasters
due to the presence of functionally supplementary sensors to
collaboratively detect railway anomalies.

Parallel to this paper, the SMART2 Project [26]2 recently
envisages another system-level strategy to possibly solve the
same problem as this paper does. The difference is that
SMART2 proposes to use drones, intensive wayside sensor
networks, and on-board sensors to conduct railway anomaly
detection and warning. As previously explained, one of the
main issues with this proposal is the considerable cost involved
in covering extensive railway systems. Moreover, there are
operational challenges with drones, such as powering, mainte-
nance, and intelligent scheduling, which raise concerns about
their compatibility with the current railway infrastructure.
Even if this is not the case, we believe this paper provides flex-
ibility and new motivations for designers of future-generation
intelligent railway systems worldwide.3 The proposed pilot-
based accident-prevention mechanism is designed as an add-
on solution to the current railway system. It does not require
any upgrades to existing infrastructure, such as installing on-
board sensors on locomotives or deploying wayside sensors.
In contrast, the SMART2 Project expects to deploy on-board
sensors and wayside sensors, and therefore, it is not an add-
on and compatible solution. This is a promising feature for
countries that are not free of upgrading their existing railway
infrastructures and existing trains.

The contributions of this paper are summarized below.
1) We provide a systematic solution blueprint for the railway

safety-guaranteeing problem. The sensor deployment and
information streaming strategies to realize such a system
are discussed. See Section II and Figs. 1, 2;

2) We present an autonomous driving method for the pilot
vehicle; See Section III and Figs. 5, 6, and 7. Key aspects
include:

i) The relative distance profile between the mother train
and the pilot vehicle is designed based on a multi-
objective functional optimization where the decision

2Readers may find further information at https://smart2rail-project.net.
3SMART2 Project has not been practically implemented at the current time.
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variable is the traction or braking force for the pilot
vehicle (i.e., a time function). The objective is to
minimize the relative acceleration and deceleration
distances of the pilot vehicle, the total energy required
for the pilot vehicle, and the total jerks that the pilot
vehicle experiences. See Eqs. (3)∼(15).

ii) We introduce two second-order cone constraints into
the functional optimization so that the traction or
braking force for the pilot vehicle is guaranteed to be
continuous over time. See (26), (27), (35), and (36);

3) We display a vision-based railway anomaly inspection
method to detect track failures, landslides and mudslides,
and trespassers and workers; See Section IV. In highlights,

i) We develop a new deep network called Folded Spatial
Convolution Neural Network (FSCNN) for semantic
segmentation of real-time captured images in railway
scenes. It has higher computational efficiency and
achieves better long-range message passing than exist-
ing baselines such as the Spatial Convolution Neural
Network (SCNN); See Fig. 15;

ii) An integrated vision-based railway inspection system
is proposed to function for track inspection and ob-
stacle detection. The system works with the railway
vision segmentation results from FSCNN; See Fig. 14.

iii) A new evaluation dataset, named RailInspect, of rail-
way anomaly inspection has been created, which
addresses the scarcity of publicly available datasets.
The results obtained using RailInspect demonstrate the
practicality and effectiveness of the proposed inspec-
tion system.

The paper is organized as follows. In Section I, we provide
the problem background and highlight the overall contributions
of this paper. In Section II, the pilot-vehicle-based framework
to guarantee railway safety is proposed. The autonomous
driving method for the pilot vehicle is designed in Section
III, and the vision-based railway anomaly inspection system
is presented in Section IV. The conclusions in Section V
conclude this paper.

II. SYSTEM DESIGN

The whole view of the pilot-based accident-prevention
mechanism is shown in Fig. 1.

Fig. 1. The 3-dimensional (3D) illustration of the whole system. The
small yellow vehicle (left) is the pilot vehicle running ahead of its mother
green train (right). The pilot vehicle can be seen as the soft-connected
virtual locomotive of the mother train. The model is created by Cinema 4D
(https://www.maxon.net/en/cinema-4d).

A. System Integration

The pilot vehicle is mainly equipped with (a) a collision
detection device to detect the collisions between the pilot
vehicle and landslides or mudslides, or another train; (b) a
camera to capture the railway conditions ahead and to identify
the track distortions, track breakages, trespassing humans,
railway workers, landslides, and mudslides using deep learning
methods; (c) a communication device to exchange information
with its mother train; (d) a line-of-sight ranging device to
measure the real-time relative distance from the train; (e) a
side-pressure sensor installed on wheels to monitor the track
status, i.e., whether the track is deformed; and (f) an inertial
unit (e.g., gradiometer and gyroscope) or a tiltmeter to monitor
whether the track is tilted. The sensors are functionally
supplementary, so reliability can be further controlled. For
example, even when the camera is out of work, e.g., in very
foggy weather conditions, the side-pressure sensor and the
front collision detector can still perceive dangers. The converse
is true as well. The pilot vehicle is an autonomous one so it
can intelligently maintain a safe distance from the train.

A close-up of the pilot vehicle is available in Fig. 2 (a). In
Fig. 2 (b), the positions to place the mentioned sensors are
illustrated.

(a) Cinema 4D Model

Collision Detector

Camera

Light
Wheel

Side-pressure Sensor

Gradiometer

Power
Brush

Light

(b) Topology Model

Fig. 2. The 3D illustration of the pilot vehicle. In (b), a gradiometer or a
tiltmeter is installed inside the vehicle.

Remark 1: As a replacement for the line-of-sight ranging
device (e.g., radar and laser [27]) to measure the real-time
relative distance between the pilot vehicle and its mother train,
the wayside positioning devices (e.g., balises [8]) could be
utilized to obtain the real-time positions of the pilot vehicle
and the train and then decide the relative distance. To be
specific, for example, when the train and the pilot vehicle pass
by wayside balises, electromagnetic readers installed on the
train and the pilot vehicle can query balises about the current
positions because balises know their installation positions on
the track. Through this, the relative distance between the train
and the pilot vehicle can be determined. Note that in this case,
the positioning accuracy depends on the installation density
of the balises on the track. When the installation density is
high (e.g., one per meter), the accuracy and reliability of such
a positioning scheme are high. The benefit of using balises
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is that the relative distance along curved tracks can also be
obtained. �

Remark 2: Global navigation satellite system (GNSS) re-
ceiver is not deployed for the pilot vehicle to obtain the real-
time position because in mountains or tunnels (e.g., China’s
Longhai Railway) or rainy or foggy environments, the GNSS
signal is so weak that it may not be reliable enough to precisely
locate the carrier. Therefore, for the safety guarantee purpose,
it is better to measure and utilize the relative distance between
the pilot vehicle and its mother train. �

Remark 3: The proposed method is an add-on solution
without requiring changes or upgrades of existing railway
infrastructures and trains. �

B. Information Streams

Since the focus of this paper is not on the mother train,
we assume that reliable information about the train, such as
real-time positions and velocities, is known [6], [28], [7].

At any time, the ranging device can obtain the relative
distance between the pilot vehicle and its mother train. Using
this relative distance, the pilot vehicle could maintain a safe
distance from the train. When a straight-line ranging device
is used, if the pilot vehicle is outside the line-of-sight area
of the train, the straight-line ranging device cannot provide
relative distance anymore.4 In this case, the train and the
pilot vehicle use wireless communication devices to exchange
information with each other. Specifically, the train transmits its
real-time velocity to the pilot vehicle. The pilot vehicle utilizes
its autonomous driving system to infer the current relative
distance and maintain it within a safe range. This temporary
dead-reckoning strategy would not cause a disaster because
most parts of a railway are nearly straight.

By jointly using the vision-based inspection method, colli-
sion detector, and side pressure sensor, if the pilot vehicle iden-
tifies any potential dangers, it transmits the warning message to
the train or directly commands the train to brake. Meanwhile,
the railway conditions can be sent to the train operator via an
image stream. The warning is also triggered if the tiltmeter
installed in the pilot vehicle detects any tilt on the track, i.e.,
one side of the track is significantly higher than the other side.

C. System Functioning

After depicting the hardware structure of the pilot vehicle
(Fig. 2) and its integration method into the current railway
system (Fig. 1), to function the proposed pilot-based accident-
prevention mechanism, the following steps are to design the
autonomous driving method and anomaly inspection method
for the pilot vehicle, which are the software part of the
proposed mechanism and discussed in Sections III and IV,
respectively. In this sense, the contents in Sections III and
IV would be technically unrelated. However, they are highly
related at the system level: they complementarily enable
the function of the proposed pilot-based accident-prevention
mechanism. An illustration is given in Fig. 3. Specifically,

4Recall from Remark 1 that when wayside positioning devices such as
balises are used, directly measuring the relative distance along curve tracks
is possible.

the pilot vehicle is supposed to conduct scene perception by
signals from different sensors such as the collision detector
and the camera, and distance control from its mother train
by an autonomous driving system. The pilot vehicle is also
expected to send real-time visual information to the driver of
its mother train for his information and to generate brake and
warning messages.

Train Pilot

Video Stream

Brake Command

Railway Track

Warning Signals

Scene Perception

(Signals (e.g., Video) Analysis)
Distance Control

(Autonomous Driving)

Fig. 3. The pilot vehicle navigates its mother train; the pilot vehicle can be
seen as the soft-connected virtual locomotive of the mother train. The pilot
vehicle is supposed to conduct scene perception and distance control (from its
mother train). The pilot vehicle sends visual information to the train’s driver
and generates brake and warning messages.

III. AUTONOMOUS DRIVING OF THE PILOT VEHICLE

In this section, we design the autonomous driving method
for the pilot vehicle to dynamically adjust the relative distance
from its mother train. Specifically, we expect the distance
between the pilot vehicle and its mother train to be suf-
ficiently small near the stations to save space, and to be
sufficiently large during a trip to guarantee railway safety.
The autonomous driving problem is technically an optimal
control problem where the power supply system of the pilot
vehicle dynamically changes the traction or the braking force
imposed on the pilot vehicle to dynamically control the relative
distance between the pilot vehicle and its mother train. This
optimal control problem can be mathematically formulated
into a multi-objective functional optimization where
1) the decision is a continuous-time function representing the

traction or braking force imposed on the pilot vehicle;
2) the objective is to minimize the relative acceleration dis-

tance and the relative deceleration distance of the pilot
vehicle, the total energy required for the pilot vehicle, and
the total jerk that the pilot vehicle experiences during a
trip;

3) the constraints include the dynamics and kinematics of the
pilot vehicle and some boundary conditions (e.g., minimum
safety distance between the pilot vehicle and its mother
train, maximally allowed velocity difference between the
pilot vehicle and its mother train, maximally allowed
traction and braking forces). In addition, we introduce two
second-order cone constraints so that the decision, i.e., the
traction or braking force, is guaranteed to be a continuous
function over time.

Afterward, the multi-objective functional optimization prob-
lem is decomposed into two functional sub-problems that can
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be independently solved using the pseudo-spectral method.
Finally, controllers such as PID controllers are used to let the
power supply system drive the pilot vehicle so that the pilot
vehicle can follow the relative distance profile predesigned by
the multi-objective functional optimization.

A. Problem Formulation

Suppose we investigate a train traveling from station A to
station B; see Fig. 4. We aim to design a suitable time function
xref as a reference for x. During the trip, the pilot vehicle tries
to use an efficient control algorithm to let x track xref as ac-
curately as possible. In other words, the smaller the difference
between the expected xref and the real-time measured x, the
better. The control scheme of autonomous driving is shown
in Fig. 5. In detail, firstly, the mother train transmits its real-
time velocity vm and position pm to the autonomous driving
system that also simultaneously receives the real-time relative
distance x from the ranging device; secondly, the autonomous
driving system compares the tracking error between xref and
x and generates the expected traction or braking force signal
uref for the power system of the pilot vehicle to execute;
thirdly, the power system outputs the real traction or braking
force u to drive the pilot vehicle, during which uref and u are
expected to be as close as possible, thus xref and x would
also be as close as possible.

Train

A B

v

pm x

u
r n

G

vmvm

Fig. 4. The pilot vehicle and its mother train (only the locomotive displayed)
are running from station A to station B. The relative geometry of the system
and the force analysis of the pilot vehicle are shown. The distance (along
the track) to the train from station A is Pm; the relative distance from the
pilot vehicle to the train is x; the velocity of the train is vm and of the pilot
vehicle is v. Four types of forces are acting on the pilot vehicle: the traction
or braking force u (negative when braking), the resistance r, the support n,
and the gravity G.

Remark 4: In this study, we do not take into consideration
the automatic train operation (ATO) problem of the mother
train. Instead, we suppose that the speed-distance profile of
the mother train is already determined [8], [29], [30] and we
focus only on the autonomous control of the pilot vehicle. In
addition, we assume that the autonomous driving system of the
pilot vehicle can obtain the real-time velocity vm and position
pm of the mother train via the communication channel. �

A proper reference signal xref should satisfy the following
criteria:
1) It is small (e.g., within 10 meters or even 0 meters) when

the train parks at, starts departing from, or approaching its
stations. This is to limit the space occupied by a train at a
station;

2) It is larger than the emergency braking distance of the
mother train (e.g., over 800 meters) when the train is
running between the two stations;

Autonomous Driving System

xref  Generator

Controller

Power System

vm

x
uref 

xref 

Pilot

Vehicle

Mother

Train

Ranging

Device
u

pm

v

Fig. 5. The control scheme of the autonomous driving system for the pilot
vehicle. The controller continuously compares the difference between the
expected xref and the real-time measured x, and then generates the command
signal uref (viz., traction or braking force) for the power system to execute.
Physically, the ranging device and the autonomous driving system are all
installed on the pilot vehicle.

3) It requires as little as electrical energy from the railway
power supply system. This is to save energy and reduce
the emission of greenhouse gases (e.g., carbon dioxide);

4) It acts as few as jerks, i.e., sudden changes in u, on the pilot
vehicle. This is to protect the pilot vehicle from mechanical
shocks and wear.

B. System Dynamics

In order to generate and perform perfect tracking of xref ,
we need to study the system dynamics of the pilot vehicle
along the track. Fig. 4 shows the forces acting on the
pilot vehicle. The traction or braking force u is from the
power system, which is negative during braking period. The
resistance r consists of four parts: (a) mechanical rolling
resistance rr; (b) aerodynamic drag rd; (c) gradient resistance
rg; and (d) curve resistance rc [31], [8], [32]. According to
the Davis formula [33], the rolling and aerodynamic resistance
can be jointly expressed in terms of velocity v and mass m
as

rr,d = rr + rd = m · (c0 + c1v + c2v
2), (1)

where c0, c1, and c2 are constant coefficients for a given
vehicle, which are usually obtained by wind tunnel tests [34].
Besides, the gradient resistance rg and curve resistance rc can
be given in terms of the gradient angle θ and track curve
radius ρ as rg = mg sin θ and rc = mg · 700/ρ [31], [32],
respectively, where g denotes the gravity constant (9.81N/Kg).
Note that θ = θ(p) and ρ = ρ(p) are functions with respect
to the position of the pilot vehicle and p := pm + x. Note
also that tunnel resistance discussed in [30] can be integrated
into rr,d; one just needs to adjust the values of c0, c1, and c2
along the track. Therefore, neglecting tunnel resistance does
not lose the generality of the system’s dynamics analysis.

As a result, according to Newton’s second law, we have the
system dynamics of the pilot vehicle as

dx

dt
= v − vm

dv

dt
= ε

u

m
− c0 − c1v − c2v2 − g sin θ − g 700

ρ
,

(2)
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where ε denotes the acceleration coefficient [35]; this is a
nonlinear system. Note that the total resistance equals to
r = rr,d+ rg + rc = m(c0 + c1v+ c2v

2) +mg sin θ+mg 700
ρ .

Note also that the forward force generated by the gravity of the
pilot when it runs downhill has been implicitly incorporated
into (2). Specifically, when the gradient angle θ of the track is
positive such as uphill case, the value of −g sin θ is negative,
and it denotes the gradient resistance generated by gravity.
However, when the gradient angle θ of the track is negative
such as downhill case, the value of −g sin θ is positive, and it
denotes the forward force generated by gravity.

C. Design the Reference Relative Distance

In this subsection, we design a proper reference relative
distance profile xref . Suppose that the train will take time T
to travel from station A to station B (T is available from the
train’s ATO [8]). First, we aim to minimize two criteria for
the pilot vehicle:
1) Total energy that the pilot requires from the power system,

i.e., E =
∫ T

0
|u(t) · v(t)| dt. Note that instantaneous power

is defined as the product of instantaneous external force and
instantaneous velocity, and the energy is the time integral
of the power. Here, we suppose that the power system
can output both traction force (positive) and braking force
(negative). Since u(t) is negative when actively braking,
the absolute function is needed. If the braking force is not
generated from the power system but from an independent
braking system such as a friction-based braking system
[36], we have u(t) = 0 when braking.

2) Total jerk required, i.e., J =
∫ T

0
1/m · |du(t)/dt| dt. Note

that the jerk j(t) is defined as the derivative of the acceler-
ation with respect to time, i.e., j(t) := 1/m ·du(t)/dt. We
use the integral of the absolute value of the jerk function
as the objective because this objective can guarantee the
boundedness and continuity of the jerk function j(t). The
boundedness and continuity of the jerk function j(t) im-
plies the comfortable riding feelings of passengers and mild
mechanical wear of equipment. According to the Riemann-
Lebesgue theorem, a bounded function on a compact (i.e.,
finite and closed) interval is almost everywhere (in the
Lebesgue zero-measure sense) continuous if and only if
it is Riemann integrable. Therefore, by minimizing the
defined integral, the upper bound of the absolute value of
the jerk function j(t) is minimized while guaranteeing that
the function j(t) is continuous. On the other hand, when the
jerk function j(t) is bounded and continuous, the control
function u(t) is guaranteed to be smooth; cf., e.g., [37,
Eq. (3.4)], [38, Eq. (2.3a)]. A smooth control function u(t)
is easier to be generated by the power system with high
accuracy. More discussions and experimental verification
on this point can be seen in Appendix A of the online
supplementary materials.

Remark 5: In this paper, we assume that the required traction
and braking force u, which is negative when braking, for
autonomous driving of the pilot vehicle is solely supplied
by the conventional power system. However, it is possible
to consider the inclusion of the regenerative braking system

simultaneously. For example, when the required braking force
is u = −1×103N, it is possible to let the regenerative braking
system provide u1 = −0.2× 103N (N.B.: u1 is generated by
the kinetic-to-electrical energy transformation process) and let
the usual power system provide the other u2 = −0.8× 103N
where u1 + u2 = u. For another example, when the required
traction force is u = 1 × 103N, it is possible to let the
regenerative braking system provide u1 = 0.2 × 103N (N.B.:
u1 is generated by the electrical energy stored in the energy
storage device) and let the usual power system provide the
other u2 = 0.8 × 103N where u1 + u2 = u. However, how
to schedule such braking and traction efforts for the pilot
vehicle is beyond the research focus (i.e., accident prevention
mechanism design) of this paper—it is a separate research
issue; see, e.g., [39], [29], [40] where the design problem
of xref may be of a different optimization formulation. For
more notes on this point, see Appendix B of the online
supplementary materials. �

Suppose that when the train is either parked at a station or
running in close proximity to it, i.e., approaching or departing,
there is a minimum required relative distance, denoted as
x0 (e.g., 20 meters), which should be small to save the
station space and prevent potential collisions with other trains.
Notably, x0 can even be set to zero if a precise and soft-contact
control system, which is similar to rendezvous and docking in
astronautics, and soft landing in aeronautics, is available so
that potential collisions between the mother train and the pilot
vehicle can be avoided. When the train is running between the
two stations, we assume that the maximum relative distance is
xmax, which must be greater than the safety distance xs (e.g.,
1400 meters), as illustrated in Fig. 6. The following constraints
must be ensured ∀t ∈ [0, T ]:

1) Boundary conditions, i.e., xref |0≤pm≤psm = x0 = const,
v|0≤pm≤psm = vm = vm(t), xref |pem≤pm≤R = x0 =
const, and v|pem≤pm≤R = vm = vm(t); see Fig. 6;

2) Safety relative distance, i.e., xref |pcm≤pm≤pbm = xmax =
const > xs, v|pcm≤pm≤pbm = vm = vm(t); see Fig. 6;

3) Maximum relative velocity, i.e., v − vm ≤ v∆
max;

4) Maximum allowable traction or braking force −U ≤ u ≤
U , where U denotes the maximum braking force and U
the maximum traction force;

5) u is at least continuous at turning points of trip sections,
i.e., at psm, pcm, pbm, and pem, better to be smooth as well.
This is to limit the mechanical jerks acting on the pilot
vehicle. More importantly, a continuous u is easier for the
power system to generate.

Fig. 6 means that in our model, we expect the velocity of the
pilot vehicle to follow the velocity of the mother train when
0 ≤ pm ≤ psm, pcm ≤ pm ≤ pbm, and pem ≤ pm ≤ R (so that
the constant relative distance could be retained). In practice,
psm and pem are fixed due to railway safety policies. Only pcm
and pbm are allowed to be optimized. Of course, pcm and pbm
could also be fixed if needed or preferred. However, in this
paper, we expect that the acceleration distance between psm
and pcm is as short as possible, as is the deceleration distance
between pbm and pem. This is because the mother train and the
pilot vehicle should maintain a relative distance greater than

IEEE Transactions on Intelligent Transportation Systems (DOI: 10.1109/TITS.2023.3331901). Authors' Final Version.



7

A B

xref

xmax

Rp c
mp c
m p b

mp b
m0 p s

mp s
m p e

mp e
m

xsxs

xx00x0

Fig. 6. An illustration of a possible xref . The relative safety distance (i.e.,
emergence braking distance) of the mother train is denoted as xs. The distance
(along the track) from station A to B is R. The pilot vehicle maintains the
constant relative distance x0 when the train departs from and approaches its
stations to save station space so that latent collisions between the pilot vehicle
and other trains can be avoided. The vehicle uses the buffer distance from
psm to pcm to reach xmax from x0, and the buffer distance from pbm to pem
to reach x0 from xmax. Note that in practice, xmax and xs have almost
the same value. The superscript i of pim labels the notations at state i, i.e., s
denotes start, e denotes end, c denotes cruise, and b denotes brake.

the safety distance xs for as long as possible. To elaborate,
as depicted in Fig. 6, since xmax and xs are nearly equal,
extending the safety running distance between pcm and pbm
implies reducing the acceleration and deceleration distances
(i.e., minimizing pcm and maximizing pbm), respectively.

In summary, we solve the following multi-objective func-
tional optimization problem, where the objectives are to mini-
mize the acceleration distance in (3), the deceleration distance
in (4)5, the total energy required in (5), and the total jerk
experienced in (6), and the functional decision variable is the
traction or braking force as u(t):

min
u(t)

pcm (3)

max
u(t)

pbm (4)

min
u(t)

∫ T

0

|u(t) · v(t)| dt (5)

min
u(t)

∫ T

0

1

m

∣∣∣∣du(t)

dt

∣∣∣∣ dt (6)

subject to

dpm
dt

= vm, (7)

dxref
dt

= v − vm, (8)

dv

dt
= ε

u

m
− c0 − c1v − c2v2 − g sin θ − g 700

ρ
, (9)

xref |0≤pm≤psm = x0, v|0≤pm≤psm = vm, (10)
xref |pem≤pm≤R = x0, v|pem≤pm≤R = vm, (11)
xref |pcm≤pm≤pbm = xmax, v|pcm≤pm≤pbm = vm, (12)

psm ≤ pcm ≤ pbm ≤ pem, (13)

v − vm ≤ v∆
max, (14)

− U ≤ u ≤ U, u ∈ C0[0, T ], (15)

5Since pem is fixed, the minimization of deceleration distance pem − pbm is
equivalent to pbm maximization.

where C0[0, T ] means the collection of all continuous func-
tions over the time period [0, T ]. Since this is a multi-objective
optimization, we can linearly combine the four objectives and
solve

min
u(t)

pcm− pbm + λ1

∫ T

0

|u(t) · v(t)| dt+ λ2

∫ T

0

1

m

∣∣∣∣du(t)

dt

∣∣∣∣ dt,
where λ1 ≥ 0 and λ2 ≥ 0 are trade-off weights to be
empirically tuned.

Usually, we prefer to design xref with respect to pm rather
than to t because a train is always required by the train
scheduling system to temporarily limit its speed or even stop,
which would mess up the pre-designed running plan. Note that
during a trip, T may be changed but R cannot be. Therefore,
we have an alternative for the optimization problem (3)∼(15)
as

min
u
pcm − pbm +

∫ R

0

λ1 ·
∣∣∣∣u · vvm

∣∣∣∣+ λ2 ·
1

m

∣∣∣∣ dudpm
∣∣∣∣ dpm, (16)

subject to

dxref
dpm

=
v

vm
− 1, (17)

dv

dpm
=

1

vm

[
ε
u

m
− c0 − c1v − c2v2 − g sin θ − g 700

ρ

]
,

(18)
Eqs. (10) ∼ (15).

Note that in this case, u ∈ C0[0, R] rather than C0[0, T ] be-
cause we treat u as a function of pm instead of the time t. Note
also that |du/dt| = |du/dpm · dpm/dt| = |du/dpm| · dpm/dt
because dpm/dt = vm ≥ 0.

The alternative optimization problem (16) is more suitable
since θ(·) and ρ(·) are direct functions of p := pm + xref .
We usually set λ2 to a large value because we expect u
to be relatively smooth so that the actuator (i.e., the power
system) could easily execute the command. Note that in this
alternative, all the functions are with respect to pm. In addition,
according to Hölder’s inequality, we have

∫ R
0
|du/dpm| dpm ≤√

R ·
∫ R

0
(du/dpm)

2
dpm. Therefore, it suffices to replace the

absolute objective function with a surrogate quadratic function
(N.B.: when the L2 norm is minimized, the L1 norm is also
decreased). This is because a smoother objective is easier
to solve from the viewpoint of optimization theory. Another
perspective of understanding this replacement strategy is that
we use a smooth quadratic function to approximate the non-
smooth absolute function; hence, one may also find other
smooth functions to approximate the absolute function.

When 0 ≤ pm ≤ psm, pcm ≤ pm ≤ pbm, and pem ≤ pm ≤
R, we have xref (·) = x0 or xmax, and v(·) = vm(·) since
dxref/dpm ≡ 0.

Assumption 1: Suppose that
1) at psm, the speed of the mother train reaches vsm;
2) at pcm, the speed of the mother train reaches vcm;
3) at pbm, the speed of the mother train reaches vbm;
4) and at pem, the speed of the mother train reaches vem.
Note that vsm ≤ vmmax

, vcm ≤ vmmax
, vbm ≤ vmmax

, and vem ≤
vmmax

, where vmmax
is the speed limit of the train; for a given
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trip of a train, vsm, vcm, vbm and vem are pre-determined because
the speed-distance profile of the mother train is available; see
Remark 4. �

With Assumption 1, we can approximate us0 := u|pm=psm ,
uc0 := u|pm=pcm , ub0 := u|pm=pbm

, and ue0 := u|pm=pem as



us0 =
m

ε

[
c0 + c1 · vsm + c2 · (vsm)2 + g sin θ + g

700

ρ

]
uc0 =

m

ε

[
c0 + c1 · vcm + c2 · (vcm)2 + g sin θ + g

700

ρ

]
ub0 =

m

ε

[
c0 + c1 · vbm + c2 · (vbm)2 + g sin θ + g

700

ρ

]
ue0 =

m

ε

[
c0 + c1 · vem + c2 · (vem)2 + g sin θ + g

700

ρ

]
,

(19)
where we assume that at the four turning points, the mother
train has almost constant velocities: i.e., u(·) = m

ε [c0 + c1v+
c2v

2 +g sin θ+g 700
ρ ] because dv/dpm = dvm/dpm = 0; see,

e.g., Fig. 8. [N.B.: In real-world operations, us0, uc0, ub0, and ue0
are directly known for the pilot vehicle without using (19).]

Therefore, the optimization problem (16) could be decom-
posed into two independent optimization sub-problems (20)
for psm ≤ pm ≤ pcm and (29) for pbm ≤ pm ≤ pem, in which
we let p′m := pcm − psm and p′′m := pem − pbm. Note that in
(20), with a slight abuse of notation, pm no longer denotes the
absolute distance to station A but the relative distance to the
point psm. Similarly, in (29), pm denotes the relative distance
to the point pbm.

min
u
p′m +

∫ p′m

0

λ1 ·
(
u · v
vm

)2

+ λ2 ·
1

m

(
du

dpm

)2

dpm,

(20)

subject to

dxref
dpm

=
v

vm
− 1, (21)

dv

dpm
=

1

vm

[
ε
u

m
− c0 − c1v − c2v2 − g sin θ − g 700

ρ

]
,

(22)
xref |pm=0 = x0, v|pm=0 = vsm, (23)
xref |pm=p′m

= xmax, v|pm=p′m
= vm, (24)

v − vm ≤ v∆
max, (25)[

u− us0
m

]2

≤ α1 · (xref − x0), (26)[
u− uc0
m

]2

≤ α2 · (xmax − xref ), (27)

− U ≤ u ≤ U. (28)

min
u
p′′m +

∫ p′′m

0

λ1 ·
(
u · v
vm

)2

+ λ2 ·
1

m

(
du

dpm

)2

dpm,

(29)

subject to
dxref
dpm

=
v

vm
− 1, (30)

dv

dpm
=

1

vm

[
ε
u

m
− c0 − c1v − c2v2 − g sin θ − g 700

ρ

]
,

(31)
xref |pm=0 = xmax, v|pm=0 = vm, (32)
xref |pm=p′′m = x0, v|pm=p′′m = vem, (33)

v − vm ≤ v∆
max, (34)[

u− ub0
m

]2

≤ α2 · (xmax − xref ), (35)[
u− ue0
m

]2

≤ α1 · (xref − x0), (36)

− U ≤ u ≤ U. (37)

Eqs. (26), (27), (35), and (36) are used to compel u to be
continuous at pm = psm, pm = pcm, pm = pbm, and pm = pem,
respectively, where α1 and α2 are scaling parameters. Taking
(26) as an example for clarity, when p′m = xref − x0 ≥ 0
is small, we also require that u be close to us0. In contrast,
when p′m is not small, there will be no more restrictions on
u because [(u− us0)/m]2 < [u/m]2 ≤ 1 while p′m is usually
larger than one. Note that u/m denotes the traction-weight
ratio of a power system which is usually less than one. We
apply the quadratic function rather than the absolute function
over (u−us0)/m because we expect that any constraints of an
optimization problem should be as smooth as possible.

The optimization problem (20) and (29) could be efficiently
solved by pseudo-spectral methods. We solve them with the
mature open-source PSOPT toolbox [41] developed by C++.
The philosophies and theories of pseudo-spectral methods are
detailed in the manual of PSOPT.

Remark 6: Suppose u∗ solves the optimization problem
(16). In reality, even if the pilot vehicle’s power system can
exactly execute u∗, the relative distance x in real time may
not follow exactly xref . This is the well-known shortness of
feed-forward control methods due to the external disturbances
(e.g., wind) and the modeling error of the vehicle dynamics,
i.e., inexactness of the model (2). Therefore, a proper feedback
control algorithm to generate uref is required. That means, this
u∗ does not define the uref . Instead, it is only a temporary
auxiliary variable to generate xref . �

D. Relative Distance Tracking
According to Fig. 6, we have the autonomous driving

strategy for the pilot vehicle as shown in Fig. 7.
Suppose that the tracking error is defined as e(t) :=

xref (t) − x(t) = xref [pm(t)] − x[pm(t)]. This section aims
to design a controller that generates proper uref to eliminate
the tracking error e(t).

1) Derivation of PID Controller: Since the xref tracking
problem is not a high-accuracy-required application, a properly
designed PID controller is sometimes sufficient to utilize in
practice. The PID controller is given as

uref (t) = Pe(t) + I

∫ t

0

e(t)dt+D
de(t)

dt
, (38)
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Fig. 7. Control strategy of the pilot vehicle along the track (cf. Fig. 6).
The relative acceleration happens between psm and pcm, while the relative
deceleration happens between pbm and pem. Within other sections, the relative
distance remains.

where P , I , and D are tunable controller parameters. In
view of the space limit and novelty, details of using the
PID controller can be found in Appendix C of the online
supplementary materials.

2) Alternative Controllers: Advanced alternatives for PID
controllers in railway transportation are widely studied con-
sidering tracking accuracy and many other issues or concerns;
see [8, Section 3.3] for a comprehensive survey. Since this
paper mainly contributes to the design of a safety guarantee
system for a train operating in dangerous environments and
to the design of a proper xref for autonomous driving of the
pilot vehicle, we pay less attention to the advanced controller
design that is mature in railway engineering. If the PID
controller is not sufficient in some scenarios, engineers may
adopt advanced alternative controllers [8], for example, Fuzzy
Predictive Controller [42], [32], Fault Tolerated Controller
[43], Adaptive Iterative Learning Controller [44], etc. In view
of the necessity, we do not discuss the details here.

Remark 7: Due to uncertainties such as wind gusts, tunnel
wind resistances, and modeling errors, in reality, the traction
or braking forces uref that are truly required are sometimes
greater (in absolute value) than the planned u∗ to withstand
uncertainties. Therefore, U and U in the optimization problem
(16) are actually valued less than the truly available maximum
traction or braking forces. For example, if the true maximum
traction force of the power system is 0.65×m, we usually set
U := 0.6 ×m (cf. Table I). This is one kind of conservative
design strategy. Another alternative method is to consider the
input-saturated control strategy [45]. �

E. Experiments

In this subsection, we illustrate the performances of the
proposed algorithms for generating and tracking xref . All
the data and codes are available online at GitHub: https:
//github.com/Spratm-Asleaf/Pilot-Vehicle.

1) Parameters and Variables: We clarify the related pa-
rameters and their values, which we assign in experiments, in
Table I, where we also summarize the immediate variables,
i.e., p′m and p′′m, and the decision variable, i.e., u, with their
domains. Note that only u is the independent decision variable.
p′m and p′′m are dependent variables on u. In some railway
stations, the pilot vehicle might be required to closely attach
to its mother train (e.g., for space-saving purpose); x0 can be
set to zero.

TABLE I
PARAMETERS AND VARIABLES FOR THE AUTONOMOUS DRIVING

Parameter Description Value

R trip range from A to B (see Fig. 6) 300Km
psm see Fig. 6 15Km
pem see Fig. 6 R− psm
vmmax speed limit of the mother train 120Km/h
m mass of the pilot vehicle 2× 103Kg
xs safety distance of the train 0.8Km
xmax maximum distance to retain 1.5Km
x0 minimum distance to retain 0.1Km
g gravitational constant, see (2) 9.80665Kg/m2

ε acceleration coefficient, see (2) 1
c0 resistance coefficient, see (2) 0.01176
c1 resistance coefficient, see (2) 7.7616× 10−4

c2 resistance coefficient, see (2) 1.6× 10−5

v∆
max maximum relative velocity, see (14) 10m/s
λ1 see (16) 1
λ2 see (16) 1× 104

α1 see (26) 1
α2 see (36) 1
U maximum braking force (×m) 0.5

U maximum traction force (×m) 0.6

Variable Description Domain

p′m := pcm − psm [0, 6Km]

p′′m := pem − pbm [0, 6Km]

u traction/braking force [−U,U ]

Unit: Km stands for Kilometer, and Kg for Kilogram.
Notation: “×m” means “times of mass”.

As assumed in Remark 4, we already know vm(pm) from
the ATO of the train. In this experiment, we suppose that
vm(pm) is given as

vm = vmmax
·
[
1− expβ·pm

]
, 0 ≤ pm ≤ psm,

vm = vmmax , psm ≤ pm ≤ pem,

vm = vmmax
·
[
1− expβ·(R−pm)

]
, pem ≤ pm ≤ R,

(39)

where β = −0.008 and vmmax
= (120/3.6)m/s = 33.33m/s.

The corresponding diagram is shown in Fig. 8.
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Fig. 8. Diagram of the speed profile vm (unit: m/s) of the mother train. Red
dotted line denotes vmmax = 33.33m/s.

Last, we suppose that, for simplicity and without loss of
generality, θ = θ(pm) ≡ 0 and ρ = ρ(pm) ≡ +∞ along the
track. It means that, in this experiment, we are investigating
the railway safety guarantee problem on a flat and straight
track.
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Fig. 9. Generated xref and corresponding traction/braking command u, absolute velocity v, and relative velocity v − vm. Note that xref is bounded by
x0 = 100 and xmax = 1500; u is bounded by −U = −0.5 and U = 0.6; v is upper bounded by vmmax + v∆

m = [(120/3.6) + 10]m/s = 43.33m/s.

2) Results of Generating the Reference xref for x: First, we
give a summary of the results of the optimization subproblems
(20) and (29) in Table II. We can see from Table II that the
PSOPT can quickly solve the two problems within 6 seconds,
which satisfies the real-time requirement. Furthermore, when
psm ≤ pm ≤ pcm, the pilot vehicle takes about 5.7Km to reach
xmax from x0 and when pbm ≤ pm ≤ pem, it takes about 3.8Km
to return to x0 from xmax. This means pcm = psm+p′m = (15+
5.7)Km = 20.7Km and pbm = pem − p′′m = (285 − 3.8)Km =
281.2Km.

TABLE II
SUMMARY OF THE RESULTS OF THE OPTIMIZATIONS (20) AND (29)

Problem Description Value

(20)
CPU Time 5.289023 seconds
Optimal cost function value 1.069572× 106

p′m 5.718025× 103 meters

(29)
CPU Time 5.440077 seconds
Optimal cost function value 2.438284× 105

p′′m 3.798177× 103 meters
OS: Ubuntu V22.04; GCC: V7.4.0; PSOPT: V5.0.2.
CPU: Intel(R) Xeon(R) Silver 4216 CPU @ 2.10GHz.
RAM: Samsung Synchronous-DDR4 32G.

Second, we show the generated xref in Fig. 9. We can see
from Fig. 9 that the optimal command u for the optimization
problem (16) is continuous and bounded as expected. It is also
smooth when psm ≤ pm ≤ pcm (also when pbm ≤ pm ≤ pem)
since λ2 = 1× 104 is large. For comparison, we also plot the
optimal u for psm ≤ pm ≤ pcm with λ2 = 10 in Fig. 10. We
can find that in this case, the optimal command u would not be
very smooth, and so is the relative velocity profile. In addition,
we study the effects of (26), (27), (35), and (36). If we remove
the four constraints from the optimization subproblems (20)
and (29), respectively, we have the corresponding results in
Fig. 11. We can see from Fig. 11 that there are unexpected
sudden changes, i.e., discontinuous points, in the optimal u.
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(b) v − vm (relative velocity)

Fig. 10. Optimal u [cf. Fig. 9 (f)] and relative velocity [cf. Fig. 9 (h)] when
λ2 = 10 (cf. λ2 = 1× 104 in Fig. 9).
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Fig. 11. Optimal u [cf. Fig. 9 (b) and (f)] when there are no continuity
constraints for u.

3) Results of Tracking the Reference xref for x: As ex-
plained in Remark 6, the optimal feed-forward command u∗

generated by the optimization problem (16) is different from
the real reference feedback command uref (see also Fig. 5)
fed to the power system. This is because there is no feedback
loop to withstand external disturbances such as wind gusts,
tunnel wind resistances, and modeling errors that cause u∗ to
deviate from uref . Therefore, we have proposed to use a PID
controller to track the expected xref in Subsection III-D. The
parameters of the PID controller are P = 0.8×m, I = 0.1×m,
and D = 6×m, where “×m” means “times of mass”.
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Fig. 12. Real time relative distance x under the feedback control uref . Compared with Fig. 9 (b), the feedback control uref here is roughly the same as
the optimal feed-forward control u∗ there, but somewhat distinct. Since the PID controller is not saturation-aware for the actuator, uref may sometimes go
beyond the bounds set in Table I; cf. (d). This phenomenon can be explained by Remark 7.

The xref tracking performances with the PID controller are
shown in Fig. 12. We can see from Fig. 12 that if given xref ,
the true command uref required from the power system is
indeed somewhat different from u∗ [cf. Fig. 9 (b)]. In addition,
Fig. 12 (b) shows that the xref tracking error is within 15
meters. Since the railway safety guarantee system does not
require very high tracking accuracy of xref , the PID controller
used is sufficient.

IV. VISION-BASED RAILWAY INSPECTION SYSTEM

In this section, a vision-based railway inspection system is
presented to detect railway anomalies. It works with real-time
images from the camera installed in front of the pilot vehicle.

A. Problem Formulation

The past decade has witnessed the great rise of Deep Con-
volutional Neural Networks (DCNN) in image classification
[46] and object detection [47], especially for higher detection
accuracy and detection rate. There were also several DCNN-
based works in the maintenance of infrastructure for railway
transportation systems. For example, to name a few, in [48], a
DCNN-based multitask learning framework was designed for
detecting defects on railway ties and fasteners; in [49], DCNN
was used for wheel defects (e.g., flat spot and non-roundness)
detection; in [50], a kind of track surface defect called squat
was monitored based on a DCNN-type solution. As we can
see, however, the reported literature has paid only attention
to detecting a specific railway anomaly. We aim to provide a
comprehensive solution for the detection of multiple railway
anomalies, including 1) track distortion; 2) landslides and
obstruction; 3) trespasser and worker, see Fig. 13. In the end,
this solution is core to guaranteeing the nominal functioning
of the pilot vehicle.

B. Railway Anomalies Detection Pipeline

We propose a general pipeline of vision-based railway
inspection as shown in Fig. 14. The core techniques included
in the pipeline are a designed architecture Folded Spatial
Convolution Neural Network (FSCNN) and a track inspection
algorithm based on region-of-interest (ROI) tracing. As it
shows, the images are first fed into FSCNN to obtain the
segmentation results of rail tracks. Based on the extracted track
segments, the ROI characterized by beginning points and the

vanishing point are updated on each frame. Geometry extrac-
tion and anomaly inspection of the railway track are performed
within the latest ROI by the proposed region-growing methods.
The proposed FSCNN is also used to extract the semantic
segmentation results of other labels such as trespassers, and
workers, except the railway track. The following content will
cover the details and results of the proposed methods.

C. Folded Spatial Convolutional Neural Networks

As the first step in implementing a railway inspection
system, we propose Folded Spatial Convolutional Neural Net-
works (FSCNN) for the semantic segmentation of railway
scenes in real-time image streams.

In an image of a railway scene, due to the long and narrow
structure of railway tracks, their annotations are sparse in
pixels and difficult to learn. To solve this problem, we are mo-
tivated to borrow the philosophy behind the prevailing Spatial
Convolutional Neural Networks (SCNN) that perform well in
lane detection for autonomous driving [52]. The SCNN was
inspired by the message-passing mechanism in the conditional
random field (CRF) and Markov random field (MRF) for
image segmentation [52]. The message passing can be realized
from four directions, namely, downward, upward, leftward,
and rightward. Taking the downward message passing as an
example, we have a 3-dimensional feature tensor F with a
size of cF ×hF ×wF where cF , hF and wF indicate the sizes
of the channel, column, and row, respectively. The feature F
can be divided into hF slices of size cF × wF along the
direction of the column, which can be represented by F h

i

with i ∈ [1, hF ]. The message passing can be implemented
iteratively from F h

1 to F h
hF

to produce a new feature map FD

with the same sizes as F . Mathematically, a convolution kernel
Kh with a size of cF × k, where k ≤ wF is the kernel size
along the row, is involved in the downward message passing
as FD = fdown(F ), and

FD
i =

{
F h
i i = 1,

F h
i +

[
Conv

(
F h
i−1,Kh

)]
+

i = 2, 3, . . . ,HF ,

where [·]+ := max(·, 0) is the ReLU activation function.
The core of our FSCNN is the Folded Message Pass-

ing (FMP) operation, which is the concatenation of spatial
CNN features from four directions along the channel, i.e.,
F ′ =

[
FU ,FD,FR,FL

]
. Therefore, F ′ with the sizes of

4cF × hF ×wF is the output of folded message passing, and
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(a) Track Distortion [51] (b) Landslides/mudslides [2] (c) Trespasser/worker

Fig. 13. Three types of railway anomalies. When a pilot vehicle detects trespassers or workers, it can ring the bell to warn and expel them, or brake itself
(and its mother train) to protect them. Note that braking a pilot vehicle is much easier than braking its mother train, due to mass difference.
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Fig. 14. The pipeline of the vision-based railway inspection system.

FD, FU , FL, FR are the outputs of the four directional
message passing operations. Subsequently, an atrous spatial
pyramid pooling (ASPP) structure [53] is implemented to
allow the fusion of previously concatenated outputs and adapt
to the higher-level segmentation task. The objective function
that we used for semantic segmentation is the widely-used
multi-label cross-entropy loss. The overall FSCNN model is
demonstrated in Fig. 15. The advantages of our proposed
FSCNN are twofold: 1) Time efficiency: Instead of performing
a serial four iterative directional convolutions in SCNN, we
concatenate them together in parallel. This operation theoret-
ically takes only 25% computational time of the original; 2)
Powerful message passing: the message passing in SCNN is
anisotropic in directions, whereas in the theoretical MRF/CRF
framework influence of neighbors on a pixel should be
anisotropic. Our proposed folded message-passing module can
remedy this problem in a parallel way, which is followed by
a convolutional operation to aggregate the directional features
without sequential order.

D. Railway Track Inspection and Anomaly Detection

The proposed FSCNN can extract a binary map of railway
tracks by semantic segmentation, which is further utilized for
track anomaly inspection. For these purposes, we adopt a
simple yet effective pipeline including two steps: 1) Identify
and trace the ROI (see Fig. 16) from the ego view of the
pilot vehicle. 2) Apply a region-growing algorithm to extract
and inspect railway tracks. We do not use the direct end-to-
end training frame because, at present, the available annotated

dataset for railway anomaly scenes is scarce. Additionally,
three reasonable and practical assumptions are made:

• The train is moving smoothly in normal environments
so that the ROI will not change much over a short time
(More analysis is presented in Appendix D of the online
supplementary materials);

• The rail track in one frame is approximately close to a
straight line, i.e., not winding obviously;

• The camera is oriented in the same direction as the
traveling direction.

1) Region-Of-Interest Identification and Updating: Based
on the track segmentation result in the previous step, we
first identify and track ROI defined by three key points: two
beginning points and one vanishing point in the image. The
beginning points refer to the two initial locations where the
rails emerge from the bottom of the image, while the vanishing
point corresponds to the visual disappearance point of the rails.
We use p3, p4, and p0 to denote the left and right beginning
points and the vanishing point, respectively, and their specific
visualization is shown in Fig. 16. We then use superscripts
to denote the frame number, with the superscript 0 indicating
the initial frame. In general, when the camera’s angle and
position on the pilot vehicle are fixed, the beginning points
p0

3 = [µ0
3, 0] and p0

4 = [µ0
4, 0] can be calibrated once, and their

initial positions need not be changed subsequently. To update
the beginning points, we perform the following operations:

µti =

{
µt−1
i |µt−1

i − µ̂ti| > ∆b,
µ̂ti |µt−1

i − µ̂ti| ≤ ∆b,
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Fig. 15. The structure of FSCNN. The input of FSCNN is a railway scene image, while the output is the semantic segmentation result.

where i ∈ {3, 4}, µ̂ti is the closest center of track segment to
µt−1
i and ∆b is a preset neighbourhood range. The candidate

centers for µ̂ti can be extracted by contour searching [54] on
the bottom pixels of the rail track segmentation binary image.

The Hough Transform (HT) [55] is used to extract the van-
ishing point of railway track lines. HT takes effect in a polar
space equipped with two dimensions l and θ. A point in the
image plane with orthogonal coordinates (µ, ν) are expressed
with (l, θ) in the polar space, where l = µ cos θ + ν sin θ.
By setting a proper threshold of passing points voting [55],
we can extract multiple straight lines that approximate the
railway tracks on images. Then, we estimate the vanishing
point p0 = [µ0, ν0]

> (see Fig. 16) through a least-square
method,

min
µ0,ν0

n∑
i=1

ai · (li − µ0 cos θi − ν0 sin θi)
2
, (40)

where ai = zi\
∑
zi and zi is the voting number of a

line (li, θi) in the polar diagram. In order to stabilize the
vanishing point pt0 in a series of images, we adopt an adaptive
exponential smoothing method to eliminate the stochasticity,
i.e.,

pt0 =
(
1− e−ψ·ε

)
pt−1

0 + e−ψ·εp̂t0, (41)

where p̂t0 is the estimated vanishing point obtained by Hough
transform in the j-th frame; ε is the residual of the least square
estimation in Eq. (40) and ψ is a tunable parameter to control
the weight of the current instantaneous HT estimation p̂t0.
Usually, we set p0

0 = p̂0
0. Finally, we define the set of pixels

located within the triangle formulated by the three key points
p0, p3 and p4 as the Region of Interest i.e., ROI, denoted
by R. The ROI tracking method mentioned above can stably
detect the same rail track across multiple frames, ensuring
that the initially set track is detected even in the presence of
multiple railways.

2) Region-Growing Inspection Algorithm: Before detecting
track anomalies through the visual track segments, a homog-
raphy matrix M, which transforms the visual segments from

(a) Three points for a Straight Track (b) Three points for a Curve Track

p
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(c) Homography Transformation

w

h

w

h

(d) Region-Growing Algorithm

Fig. 16. An illustration of the vanishing point, beginning points, homography
transformation (HoT), and region-growing algorithm. In (a) and (b), the
underlying points are marked by red crosses. In (c), p0 is the vanishing point
[cf. (a)], and HoT transforms a red dotted trapezoid (i.e., p1-p2-p3-p4) into
a purple solid rectangle (p′1-p′2-p′3-p′4), and p3 (resp. p4) coincides with p′3
(resp. p′4). In (d), the tracks are projected into the bird eye’s view by HoT.
Therefore, they are parallel instead of intersecting. Note that (b) is an intra-city
railway track for slow-speed trains. We chose it for demonstration because
we need a significantly curving track to clearly define the VP for a curve
track. For inter-city high-speed trains, curved tracks like (b) are impossible to
encounter (also recall the previous assumption: railway tracks in one frame
are approximately close to a straight line).

the camera’s view to a bird’s eye view, is determined by
utilizing the ROI vertices. Given the coordinates of a railway
track pixel [µ′i, ν

′
i]
> (on an image), and the transformed bird’s

eye coordinate [µi, νi]
> in the global view from above, we

have [µi, νi, 1]> = M[µ′i, ν
′
i, 1]>. The basic Direct Linear

Transform (DLT) algorithm [56] is applied to estimate the
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homography matrix M, which needs 4-point correspondences.
Since we assume that the horizontal line of the image is
vertical to the train’s traveling direction, we can use two
beginning points and two auxiliary points, which are located
on the line from the beginning points to the vanishing point
as the 4 correspondences. Intuitively, see Fig. 16 (c).

Next, we propose a region-growing inspection (RGI) al-
gorithm based on the Hough transform for railway track
inspection and detection from the bird eye’s view. The in-
spection window will grow from the two beginning points.
The HT algorithm extracts a local line segment represented by
li = µ cos θi + ν sin θi with the largest voting point number
zi in the window. This line segment guides the growth of
the next window. After defining pa := [µa, νa]

>
,pb :=

[µb, νb]
>,pc := [µc, νc]

> and pd := [µd, νd]
> as four end-

points of the inspection window, we can get a new window
by updating the endpoints according to Eq. (42)

νc = νd = ν̃a
νa = νb = νc + h

{pa,pc} ⊂ {[µ, ν]
> |li = (µ− w) cos θi + ν sin θi}

{pb,pd} ⊂ {[µ, ν]
> |li = (µ+ w) cos θi + ν sin θi}

(42)

where w is the width of the window, h is the height, and
[µ̃a, ν̃a]

> is the previous pa before update. Intuitively, see Fig.
16 (d). The RGI algorithm will be performed step by step
until reaching an upper limiter of vertical coordinate, i.e., ν∗.
Finally, the outputs of the RGI algorithm are twofold: 1) the
gap ∆ν∗between the top detected track pixel max ν and ν∗,
namely, ∆ν∗ = ν∗−max ν. 2) The line error ε =

∑N
j=1(li−

µj sin θ0 − νj cos θ0)2 in each window, where µj and νj are
the coordinates of railway track pixels in the window and θ0 =
π/2 is the vertical direction. As we can expect, the larger the
error ε, the greater the deflection of the segmented rail from the
straight line. The RGI outputs can be used to further inspect
the track anomaly.

3) Inspection Mechanism.: Based on the proposed track
anomaly inspection algorithmic framework, we summarize the
mechanisms for detecting three types of anomalies during
deployment. a) For track distortion anomaly, by performing
the RGI algorithm, the straightness of the tracks within each
window can be assessed by the line error in each window. If
the error exceeds a certain threshold, the track is considered
distorted. b) For landslides/obstruction anomaly, by perform-
ing the RGI algorithm, we can identify the gap ∆ν∗. If this
gap exceeds a threshold, the rail is considered obstructed.
c) For trespasser/worker anomaly, our approach extends the
ROI to encompass a larger pixel area, which includes both
the original ROI and an unsafe distance area beyond it. We
then identify the semantic segments of the human category
output using FSCNN. If any segment is found within the
extended ROI, it indicates the presence of a trespasser. During
practical deployment, it is necessary to manually set certain
parameters such as the error threshold, ∆ν∗ threshold, and
the safe distance. These settings are determined empirically
and should be based on the railway environment and camera
parameters.

E. Evalutaion Dataset for Track Anomaly Inspection

To practically evaluate the performance of our vision-based
anomaly inspection method, we synthesize a new evaluation
dataset named RailInspect using RailSem19 [57]. Currently,
there is a limited amount of research available on vision
datasets specifically designed for anomaly detection in train
operation scenarios, primarily due to the rarity of railroad
anomalies. Previous work such as Riccardo [58] has ac-
knowledged this challenge and collected a genuine multimodal
dataset. However, the dataset has not been publicly released
and focuses solely on small objects placed on the railroad
track. Similarly, [59] extracted small-scale and monotonous
image data from a running locomotive camera, consisting of
only 120 frames of normal tracks and 12 frames of abnormal
tracks. Indeed, the scarcity of the datasets presents a significant
challenge in validating our proposed models and methods.
To address this challenge, we propose a data augmentation
framework based on the RailSem19 dataset, allowing us to
simulate various dysfunctional or abnormal scenarios that can
occur on real train tracks. The proposed framework enables the
generation of the RailInspect dataset. Technically, our frame-
work focuses on three main types of train track abnormalities:
distortion, obstruction, and trespasser or worker, as depicted in
Fig. 13. The specific steps involved in generating a RailInspect
image are as follows:

1) Input: An image with pixel-wise semantic labels.
2) Using the method in Section IV-D1, find the ROI pixels
R from the railway track labels.

3) Determine a subset R′ from R pixels.
4) Perform three types of image augmentation separately:

a) Track distortion: Distort R′ pixels using a ripple image
distortion method with a random trigonometric func-
tion.

b) Add obstacle for obstruction: Randomly blend a ran-
dom object (e.g., a big stone) at a random position on
R′ using the mixed image blending (MIB) method.

c) Add human(s) as the trespasser(s) or worker(s): By us-
ing the MIB method, randomly blend a random human
(e.g., a worker) at a random position on the extended
R′, which is obtained by extending a horizontal area
outside the R′ to simulate the unsafe distance.

5) Output: Augmented images.
We chose an appropriate R′ to maintain a moderate dis-

tance from the pilot vehicle to the track anomaly, which is
formulated as follows

R′ = {[µ, ν]> : ν′min ≤ ν ≤ ν′max,∀[µ, ν]> ∈ R}, (43)
ν′min = τ1(νmax − νmin) + νmin, (44)
ν′max = τ2(νmax − νmin) + νmin, (45)

where τ1 and τ2 are set to 0.3 and 0.8 in generating RailIn-
spect, respectively, and νmax and νmin are the lower and upper
vertical bound of ROI R.

In the above method, the Mixed Image Blending (MIB)
method combines alpha blending [60] and Poisson image
editing [61]. By utilizing this combination of the two tech-
niques, we can effectively adapt to handle various image
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fusion scenarios by manually adjusting the alpha parameter
defined in [60]. This method enhances the flexibility of Poisson
editing. Specifically, we set alpha values to 0.3 for obstruction
data augmentation, while for trespasser data augmentation, the
alpha value is set to 0.5.

For the ripple image distortion, we use trigonometric func-
tions to simulate the distortion of the real track. The distorted
pixel value of [µ, ν]> ∈ R′ equals the original pixel value
of [µ′, ν]>, in which µ′ is obtained using the trigonometric
formula as follows:

µ′ = µ+
ad (ν′max − ν)

ν′max − ν′min

sin

(
2πµ

λd

)
, (46)

where ad and λd are randomly sampled amplitude and wave-
length separately to simulate various distortion scenarios.

F. Experiments and Results

Source codes for RailInspect are available online at GitHub:
https://github.com/Spratm-Asleaf/Pilot-Vehicle.

1) Dataset: For the segmentation part of the inspection
system, we utilize Railsem19 [57] containing 19 categories,
as our dataset to train the railway scene understanding task,
i.e., semantic segmentation. Since [57] did not provide the
dataset split, we constructed our dataset by uniformly random
sampling on RailSem19. A set of 4,000 images is randomly
selected from RailSem19 for our experiment. The 4000 images
are split into subsets of 3000, 500, and 500 images for training,
validation, and testing. Furthermore, based on the techniques
in Section IV-E, we constructed a balanced dataset named
RailInspect-900 using the RailSem19 split test set. RailInspect-
900 consists of 450 original images from the RailSem19
test set, supplemented by three augmented versions of 150
additional images obtained from the validation set, resulting
in a total of 900 images. Two examples of synthesized data are
showcased in Fig. 18. The RailInspect-900 is implemented to
comprehensively evaluate the performance of our vision-based
railway inspection system.

2) Evaluation Metric: For semantic segmentation of rail-
way tracks, we calculate the intersection over-union (IoU)
of the prediction of railway tracks (Rail-raised and Rail-
embedded categories in RailSem19). Mathematically, the def-
inition of IoU of a class for semantic segmentation is

IoUclass =

∑
ij(A

class
ij ∧Bclass

ij )∑
ij(A

class
ij ∨Bclass

ij )
, (47)

where Aclass and Bclass are the binary segmentation masks of
the predicted and ground truth sets respectively, and Aclass

ij

and Bclass
ij are the binary values at pixel location [i, j]> in

the respective masks. The ∧ operator represents the logical
AND, while the ∨ operator represents the logical OR. The
summations are performed over all pixel locations in the
masks. Furthermore, the mean IoU is also calculated by
averaging the IoU values for all segmented classes, i.e.,

Mean IoU =
∑

class∈all classes

IoUclass. (48)

Our evaluation of anomaly detection is based on the per-
formance of methods in identifying anomaly images on the

RailInspect-900 dataset. Since this is a binary classification
task, we report the sensitivity (also known as Recall) of
anomaly detection and the accuracy of classification. Partic-
ularly, sensitivity measures the proportion of true abnormal
instances, i.e., instances that were correctly identified as ab-
normal out of all the actual abnormal instances. It indicates
the model’s ability to correctly identify abnormal instances.

3) Models: For comparison of performance against our
newly proposed FSCNN, we use the baseline approach pro-
posed in [57] and the widely used SCNN architecture [52].
The backbones for SCNN and FSCNN are both ResNet50
pretrained on the ImageNet dataset. All DCNN models are
trained using Adam optimizer with a learning rate of 0.001.
We use batch size 32 and train all models for 200 epochs.
Experiments are run on a GeForce RTX 2080Ti GPU. Further-
more, to demonstrate the superiority of our anomaly inspection
method, we establish a linear Support Vector Machine (SVM)
based on image features as the baseline. This method utilizes
features of RailInspect-900 dataset, where the features were
extracted from the middle layer of a trained FSCNN.

4) Performances of Railway Scene Segmentation: As
demonstrated in Table III, our proposed FSCNN model
achieves a higher mean IoU at 62.5% than the baseline method
FRRNB 56.9% and SCNN 55.0%. Because the segmentation
result of rails is crucial for following railway inspections,
we particularly select the Rail-raised (class 17) and Rail-
embedded (class 18) in RailSem19 to show the superiority
of the proposed FSCNN on long-range object segmentation
task. We also provide the IoU results of other classes in
Appendix E of the online supplementary materials. It is worth
mentioning that FSCNN also achieves better results in other
long-range classes, including Road, Tram-truck, and Rail-
track. A Visualization of the railway scene understanding
results is shown in Fig. 17. It can be seen that the detection of
trespassers and workers, or other barriers, can be realized via
the semantic segmentation results, of which the human can be
well-distinguished.

TABLE III
PERFORMANCE COMPARISON AMONG DIFFERENT METHODS.

Method Mean IoU(%) Rail-raised
IoU(%)

Rail-embedded
IoU(%)

SCNN[52] 55.0 68.8 40.3
FRRNB[57] 56.9 71.5 45.0
FSCNN(Ours) 62.5 72.4 54.2

5) Track Anomaly Inspection: Based on the segmentation
result, we proceed to perform the track anomaly inspection on
the RailInspect-900 dataset. It is worth noting that the ROI
tracing method in Section IV-D1 is not exactly implemented
since the utilized dataset is not based on real-time image
streams. Instead, we treat each image as the first frame and
use the initial steps of the algorithm in Section IV-D1 to
locate the ROI. In particular, the initial beginning points are
obtained from the ground truth segmentation label. A selection
of the final results is visualized in Fig. 18, showcasing our
approach to inspecting railway anomalies, including detecting
intruders, identifying track discontinuity caused by fractures
or obstacles, and recognizing track distortions. We report
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(a) Original (b) Ground Truth (c) Semantic Segmentation (d) Railway Segmentation

Fig. 17. The visualization of railway scene segmentation results on Railsem19 by the proposed FSCNN. The railway segmentation results are presented by
binary masks of ”Rail-raised” class.

the specific numerical inspection results in Table IV. It can
be observed from the table that our method achieves higher
accuracy and sensitivity for anomaly detection compared to
the data-driven baseline method. Furthermore, our detection
method is capable of processing at the speed of 10 images
per second, which is already applicable to practical scenarios.
Concurrently, we can anticipate that by employing a more
lightweight backbone, such as MobileNet [62] and using lower
resolutions, the processing speed can be further improved. We
leave this optimization task for future work, as the primary fo-
cus of this work is to demonstrate the feasibility of conducting
anomaly inspection using vision-based approaches. Finally, we
also provide a comprehensive feasibility analysis with more
details in Appendix D of the online supplementary materials,
further validating the potential deployment of the proposed
inspection system.

TABLE IV
PERFORMANCE OF TRACK ANOMALY INSPECTION ON RAILINSPECT-900.

Method Accuracy(%) Sensitivity(%)
Distortion Obstruction Trespasser

FSCNN+SVM 91.3 83.3 86.7 84.7
Ours 94.0 95.3 94.7 92.0

V. CONCLUSIONS

This paper studies a safety guarantee mechanism for railway
transportation systems. Specifically, it depends on a pilot
vehicle as a navigator to explore the unknown railway envi-
ronments ahead of the train and provide warning messages to
its mother train when necessary. Related technologies, such as
the autonomous driving method and the vision-based anomaly
detection method, are also investigated. With this systematic
approach, we expect that railway accidents worldwide could be
avoided or at least controlled. Below are some closing notes.
1) Although railway inspection vehicles (that are independent

of trains) are used to monitor the track conditions, such
periodic inspections (e.g., one time per day) are not able
to warn of real-time anomalies. For example, on a rainy
day, the railway conditions in the morning are possible to
be different from those in the evening. Therefore, the real-
time railway inspection mechanism is still expected.

2) The proposed approach is an add-on, and therefore, a
compatible solution. It does not require fundamentally
changing the current railway infrastructure, for example,
deploying wayside sensors or upgrading trains by installing
on-board sensors.

3) Considering the cost-effectiveness and practical require-
ments, the pilot vehicle is not designated for every train in
all circumstances. Instead, we suggest employing the pilot
vehicle for trains operating in potentially hazardous envi-
ronments, e.g., mountainous areas during rainy conditions.
Different from urban transit railways that are enclosed
systems and generally offer relatively safe environments,
mainline railways, and high-speed railways are operated
in diverse and open systems, which can expose them to
significantly higher risks such as trespassers and landslides
[8]. Therefore, the deployment of the pilot vehicles is
primarily intended for trains serving mainline railways and
high-speed railways.

4) It is possible that some new safety issues would be in-
troduced when using the proposed solution. For example,
the pilot vehicle might lose reliable communication with
its mother train in some rare cases (e.g., anomalies in the
communication devices), so the train would collide with its
pilot vehicle. However, we believe that this kind of collision
costs significantly less than the usual railway accidents
because the mass of the pilot vehicle is small. Besides,
if some buffering devices between the pilot vehicle and
its mother train are used, the collision risks can be further
controlled.

5) When the mother train is traversing or about to traverse
curved segments of tracks, applying the highest braking
effort can be hazardous if risk factors arise. In this situation,
it is suggested to apply a more nuanced braking strategy,
such as a slight reduction in speed, to mitigate the danger
induced by braking on curved tracks. This strategy is
essential because it allows us to minimize the impact of
potential collisions with obstructions.

6) In train scheduling, the distances between pilots and their
mother trains should be considered. However, this is prac-
tically easy because the train-pilot grouping can be treated
as a longer, multi-unit, and soft-contacted “train”. Namely,
a pilot vehicle can be seen as a part of a train, e.g., a virtual
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Track Distortion Add Obstruction Add Trespasser Track Distortion Add Obstruction Add Trespasser

Fig. 18. The visualization of results on RailInspect-900 by the proposed railway inspection system. The rows are numbered from the top to the bottom. Row
1: two original images from RailSem-19. Row 2: the augmented images for RailInspect-900. Row 3: semantic segmentation results by FSCNN. Row 4: rail
track segmentation results along with the detected vanishing point and beginning points. Row 5: projected rail track segmentation results as the input for the
RGI algorithm.

locomotive.
7) The vision-based railway inspection method might not

work robustly at night or under extremely bad weather
conditions (e.g., heavily rainy and foggy, etc.). However, it
causes no disasters because we have functionally supple-
mentary sensors to detect railway anomalies. Nevertheless,
higher-performance and more robust cameras, such as Li-
DAR or thermal imaging [58], [63], under those conditions,
are expected, as well as the corresponding rich datasets for
training anomaly detection machine learning algorithms.

8) To the best knowledge of the authors, neither the authors
nor any relevant organizations have conducted compre-
hensive industrial evaluations for the candidate solutions
including the sensor-network-based idea, the drone-based
idea, the existing SMART2 idea, and the proposed pilot-
based idea in Section I. All these solutions are more aca-
demic proposals than practical implementations. Therefore,
the purpose of this paper is to draw the attention of existing
entities (e.g., governments, universities, and companies) to
collaborate on testing potential solutions to further improve
the safety of rail transportation.

For other minor closing notes, see Appendix F of the online
supplementary materials.
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systems used in railway vehicles,” Engineering Science and Technology,
an International Journal, vol. 23, no. 2, pp. 421–431, 2020.

[37] G. Kitagawa and W. Gersch, Smoothness Priors Analysis of Time Series,
vol. 116. Springer Science & Business Media, 1996.

[38] L. I. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation based
noise removal algorithms,” Physica D: Nonlinear Phenomena, vol. 60,
no. 1-4, pp. 259–268, 1992.

[39] X. Yang, X. Li, B. Ning, and T. Tang, “A survey on energy-efficient
train operation for urban rail transit,” IEEE Transactions on Intelligent
Transportation Systems, vol. 17, no. 1, pp. 2–13, 2016.

[40] G. M. Scheepmaker and R. M. Goverde, “Energy-efficient train control
using nonlinear bounded regenerative braking,” Transportation Research
Part C: Emerging Technologies, vol. 121, p. 102852, 2020.

[41] V. M. Becerra, “Solving complex optimal control problems at no cost
with psopt,” in 2010 IEEE International Symposium on Computer-Aided
Control System Design, pp. 1391–1396, IEEE, 2010.

[42] L. Zhang and X. Zhuan, “Optimal operation of heavy-haul trains
equipped with electronically controlled pneumatic brake systems using
model predictive control methodology,” IEEE Transactions on Control
Systems Technology, vol. 22, no. 1, pp. 13–22, 2014.

[43] X. Yao, L. Wu, and L. Guo, “Disturbance-observer-based fault tolerant
control of high-speed trains: A markovian jump system model ap-
proach,” IEEE Transactions on Systems, Man, and Cybernetics: Systems,
2018.

[44] D. Huang, Y. Chen, D. Meng, and P. Sun, “Adaptive iterative learning
control for high-speed train: A multi-agent approach,” IEEE Transac-
tions on Systems, Man, and Cybernetics: Systems, 2019.

[45] P. Lin, Y. Huang, Q. Zhang, and Z. Yuan, “Distributed velocity and
input constrained tracking control of high-speed train systems,” IEEE
Transactions on Systems, Man, and Cybernetics: Systems, 2020.

[46] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,”
in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 1–9, 2015.

[47] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time
object detection with region proposal networks,” in Advances in neural
information processing systems, pp. 91–99, 2015.

[48] X. Gibert, V. M. Patel, and R. Chellappa, “Deep multitask learning for
railway track inspection,” IEEE Transactions on Intelligent Transporta-
tion Systems, vol. 18, no. 1, pp. 153–164, 2016.

[49] G. Krummenacher, C. S. Ong, S. Koller, S. Kobayashi, and J. M.
Buhmann, “Wheel defect detection with machine learning,” IEEE Trans-
actions on Intelligent Transportation Systems, vol. 19, no. 4, pp. 1176–
1187, 2017.

[50] A. Jamshidi, S. Faghih-Roohi, S. Hajizadeh, A. Núñez, R. Babuska,
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